
Updates and Case Study

Young Hyun
CAIDA

ISMA 2010 AIMS Workshop
Feb 9, 2010

Archipelago
Measurement Infrastructure

Outline

Introduction

Monitor Deployment

Measurements & Collaborations

Tools Development

Case Study

Future Work

2

Introduction

Archipelago (Ark) is CAIDA’s active measurement
infrastructure

in production since Sep 2007

focusing on

easy development and rapid prototyping

dynamic and coordinated measurements

measurement services (service-oriented architecture)

please see AIMS’09 talk for greater details

3

Architecture

measurement nodes (“monitors”) located
worldwide

standard rack-mounted servers

many thanks to the organizations hosting Ark boxes

special thanks for finding hosting sites:
• Emile Aben (RIPE)
• Sebastian Castro Avila (.nz Registry Services)
• Hyunchul Kim (Seoul National University)

4

http://www.snu.ac.kr/
http://www.snu.ac.kr/

Monitor Deployment

41 monitors in 25 countries

5

17 North America
2 South America

14 Europe
1 Africa
5 Asia
2 Oceania

Continent
21 academic
10 research network

5 network infrastructure
4 commercial network
1 community network

Organization

}

}
3/4 academic

1/4 commercial

Measurements

IPv4 Routed /24 Topology (and AS Links)

IPv6 Topology

DNS Names & Query/Response Traffic

Alias Resolution

6

IPv4 Routed /24 Topology
ongoing large-scale topology measurements

ICMP Paris traceroute to every routed /24 (8.25 million)
• about 126 /8-equivalents of routed space (as of Oct 2009)

running scamper
• written by Matthew Luckie of WAND, University of Waikato

dynamically divide up the measurement work
among members of monitor teams

3 teams active

13-member team probes every /24 in 2-3 days at
100pps
• only one monitor probes each /24 per cycle (== one pass

through all /24’s)

7

IPv4 Routed /24 Topology

8

data availability per monitor (row)

IPv4 Routed /24 Topology

collected from Sep 2007 to Jan 2010 (29 months):

5.7 billion traceroutes; 2.3TB data

~800 cycles

collecting every month now:

~290 million traceroutes; ~120 GB data

IPv4 topology data is key input into other datasets

e.g., AS links and alias resolution

9

Statistics Pages

per-monitor analysis of IPv4 topology data

10

/projects/ark/statisticswww.caida.org

http://www.caida.org/data/active/ipv4_routed_24_topology_dataset.xml
http://www.caida.org/data/active/ipv4_routed_24_topology_dataset.xml
http://www.caida.org/data/active/ipv4_routed_24_topology_dataset.xml
http://www.caida.org/data/active/ipv4_routed_24_topology_dataset.xml

11

AS dispersion
by AS hop

687k
traces

AS hop

sea-us monitor

12

AS dispersion by IP hop

IP hop sea-us monitor

13

AS dispersion by IP hop: see load balancing

sea-us monitor

Statistics Pages
work in progress: RTT plotted by country

geolocate destinations with NetAcuity

color each country by median RTT of destinations

14

15

view
from

ams-nl
Netherlands

16

view
from

she-cn
China

17

view
from

cmn-ma
Morocco

IPv6 Topology

ongoing large-scale IPv6 measurements

2.7 million traces since Dec 2008

11 monitors

4 in US, 5 in Europe, 1 Asia, 1 Oceania

ICMP Paris traceroute to every routed prefix

each monitor probes a random destination in every
routed prefix in every cycle
• 2,184 prefixes <= /48 (as of Oct 2009)
• # prefixes increased 41% between Aug 2008 and Oct 2009

probing rate intentionally reduced to 2 days per cycle

18

Alias Resolution

goal: collapse interfaces observed in traceroute
paths into routers

toward a router-level map of the Internet

earlier efforts at CAIDA:

iffinder (Mercator technique)

kapar (APAR)

past year: MIDAR

RadarGun-like approach
• probe targets to obtain IP ID samples
• find targets that share an IP ID counter

19

Measurement Big Picture

20

IPv4
topology

AS links

DNS
names

IPv6
topology

router
topology

AS
relationships

AS-router
dual graph

BGP
AS links

work in progress

existing workflow

AS graph with routers
resolved inside ASes

Collaborations
Rob Beverly and MIT Spoofer Project

how many networks allow packets with spoofed IP
addresses to leave their network?

worked on adding IPv6
• some work still to do before deployment

Matthew Luckie

using Ark monitors for various topology measurements

Alistair King
• masters student supervised by Matthew
• implemented Doubletree using Marinda (tuple space)

• Doubletree was one of the motivations for adopting the
tuple space model of coordination in Ark

21

Tools Development

22

mper

new probing engine

inspired by the probing engine of Scriptroute
• but different needs & goals => different design & implementation

mper’s goal:
• make it easy to develop complex, distributed, and parallel

measurements
• to be clear: mper itself doesn’t provide distributed

measurements but provides features oriented towards it
• clients use the Marinda tuple space for distributed

measurements

Tools Development

23

mper

based on the solid foundation of Matthew Luckie’s scamper
• uses the code from the backend of scamper

• sending/receiving ICMP, UDP, TCP packets; IPv4 & IPv6
• scheduling parallel probes, etc.

new control interface for use by client measurement
programs

new probe-response matching techniques

fine control over probe spacing for dynamic feedback-based
measurements

simulated probing
• currently, simulated response delay

mper

24

new probe-response matching techniques

guarantees no probe-response mismatches in any
consecutive 65,536 packets (in worst case)
• not just low probability; simply impossible
• even with same (src, dest, proto, sport, dport) for all probes
• multiple probers can run simultaneously without interference

preserves flow labels for load balancing

works for all probing methods (ICMP, UDP, and TCP)
and all types of responses (e.g., TCP ACK)
• TCP was especially susceptible to mismatches before

doesn’t rely on UDP checksums being preserved
• older FreeBSD clobber the UDP checksum in responses

(thanks to Matthew for fixing the FreeBSD kernel)
• also problem in other older systems

mper

25

mper client can be written in any language

Ruby binding: rb-mperio
require 'mperio'
class Prober
 def initialize
 @mperio = MperIO.new 8742
 @mperio.delegate = self
 @mperio.ping_icmp 1, "192.172.226.123"
 @mperio.start
 end

 def mperio_on_data(result)
 if result.responded?
 printf "%d %d\n", result.rx_sec, result.reply_ipid
 end
 @mperio.stop
 end
end

monitor4

Tools Development

26

Marinda

tuple space for decentralized communication, interaction,
and coordination
• tuple: array of values (strings, numbers, true/false, wildcard,

nested arrays)

a distributed shared memory + easy-to-use operations
• clients retrieve tuples by pattern matching

monitor1

central server

monitor2

monito
r3

monitor5

Case Study

27

example of distributed measurement with mper
and Marinda

case study: one part of MIDAR alias resolution

represents a common coordination pattern

demonstrates ease of implementation

Case Study

28

problem:

probe the targets of an alias set to confirm (or
corroborate) that they are aliases

requirements:

probe targets in alias set one at a time
• for details, see MIDAR talk later

some targets can only be probed from certain monitors
because of probing method restrictions

Alias Set

29

alias set: the set of IP addresses belonging to the
same router

Ti = interface i
(“target i”)

T2

T1

T4

T3

T6

T5
T8

T7

T9

alias set

Alias Set

30

T2

T1

T4

T3

T6

T5
T8

T7

T9

alias set

assign each target to exactly one monitor

Alias Set

30

T2

T1

T4

T3

T6

T5
T8

T7

T9

alias set

monitor

assign each target to exactly one monitor

Alias Set

30

T2

T1

T4

T3

T6

T5
T8

T7

T9

alias set

monitor

monitor

assign each target to exactly one monitor

Alias Set

30

T2

T1

T4

T3

T6

T5
T8

T7

T9

alias set

monitor

monitor

assign each target to exactly one monitor

monitor

monitor

monitor

Implementation

31

design:

a driver program running on the central server globally
coordinates measurements

a prober program running on each monitor executes
measurements

probing requires coordination across monitors:

driver tells a monitor to probe a target

monitor notifies driver of completion after probing

Probing

32

T2T1

T4

T3

T6

T5

T8

T7

T9

monitor A

monitor C

monitor B

monitor E

monitor D

alias set

Probing

33

T2T1

T4

T3

T6

T5

T8

T7

T9

monitor A

monitor C

monitor B

monitor E

monitor D

driver

Probing

33

T2T1

T4

T3

T6

T5

T8

T7

T9

monitor A

monitor C

monitor B

monitor E

monitor D

driver

probe

Probing

33

T2T1

T4

T3

T6

T5

T8

T7

T9

monitor A

monitor C

monitor B

monitor E

monitor D

driver

Probing

33

T2T1

T4

T3

T6

T5

T8

T7

T9

monitor A

monitor C

monitor B

monitor E

monitor D

driver

done

Probing

33

T2T1

T4

T3

T6

T5

T8

T7

T9

monitor A

monitor C

monitor B

monitor E

monitor D

driver

Probing

33

T2T1

T4

T3

T6

T5

T8

T7

T9

monitor A

monitor C

monitor B

monitor E

monitor D

driver probe

Probing

34

in practice, probe multiple alias sets in parallel

two levels of parallelism:
• across monitors
• within a monitor

recent MIDAR run:

14,566 alias sets of varying sizes
• counting only alias sets that must be probed

from multiple monitors

took ~46 minutes; would take 115 hours
without the parallelism (148x slower)

set size %
2 56.2
3 14.6
4 8.5
5 5.0
6 4.1
7 3.4
...

148 max

91.7%

Driver

35

coordination is simple to implement

telling a monitor to probe a target:

reacting to monitor notifications of completion:
• the driver’s main control loop
• implicit loop using Ruby’s block notation
• handles notifications from all monitors

$ts.write ["PROBE", monitor, set_id, iteration, target_index]

[“DONE”, <monitor>, <alias-set-id>, <iteration>, <target-index>]
$ts.consume_stream(["DONE", nil, nil, nil, nil]) do |tuple|
 puts(tuple[1]) # do something with tuple
end

Driver

36

 def start
 prime_jobs()

 # [“DONE”, <monitor>, <alias-set-id>, <iteration>, <target-index>]
 $ts.consume_stream(["DONE", nil, nil, nil, nil]) do |tuple|
 monitor, set_id, iteration, target_index = tuple[1..-1]
 set = @sets[set_id]

 unless submit_job(set)
 tuple = ["FINISHED", "set", set.set_id]
 $ts2.write tuple # broadcast set completion
 $ts2.take tuple

 @active_count -= 1
 unblock_next_job(set)
 prime_jobs()
 end

 break if @active_count == 0
 end
 end

Prober

37

prober runs on each monitor

coordinates with the driver

executes measurements with mper and saves results

 # [PROBE, <monitor>, <alias-set-id>, <iteration>, <target-index>]
 $ts1.consume_stream_async(["PROBE", $monitor, nil, nil, nil]) do
 |tuple|
 set_id, iteration, index = tuple.values_at 2, 3, 4
 set = find_set(set_id)
 set.schedule(iteration, index)
 if @more
 @more = false
 execute_measurement(set)
 else
 @deferred_measurements << set
 end
 end

Prober

38

 $ts2.monitor_stream_async(["FINISHED", nil, nil]) do |tuple|
 case tuple[1]
 when "set"
 set_id = tuple[2]
 @active_sets.delete(set_id)

 when "run"
 @drain = true
 if @active_measurements.empty? && @deferred_measurements.empty?
 @mperio.suspend
 end
 end
 end

Prober

39

notifying driver of completion of probe:

notifying downloader of completion of run:

working towards automating full system
• coordinate stages on different machines with Marinda

$ts.write ["DONE", $monitor, set_id, iteration, target_index]

$ts.write ["FINISHED", "prober", run_id, $monitor, out_path]

prober downloader

monitor

output

FINISHED analyzerANALYZE

Future Work

release mper and Marinda under GPL

create AS-router dual graph

improve infrastructure to allow more collaborators
to use Ark

40

Thanks!

41

www.caida.org/projects/ark
For more information, or to request data:

For questions, or to offer hosting: ark-info@caida.org

http://www.caida.org/data/active/ipv4_routed_24_topology_dataset.xml
http://www.caida.org/data/active/ipv4_routed_24_topology_dataset.xml
mailto:ark-info@caida.org
mailto:ark-info@caida.org

