=

Measurement Infrastructure

Updates and Case Study

Young Hyun

CAIDA

ISMA 2010 AIMS Workshop
Feb 9, 2010

Outline

* Introduction

** Monitor Deployment

** Measurements & Collaborations
** Tools Development

* Case Study

* Future Work

INntroduction

* Archipelago (Ark) is CAIDA’s active measurement
infrastructure

“+ In production since Sep 2007

¢ focusing on

= easy development and rapid prototyping
** dynamic and coordinated measurements
= measurement services (service-oriented architecture)

* please see AIMS’09 talk for greater details

Architecture

** measurement nodes (“monitors”) located
worldwide

= standard rack-mounted servers
** many thanks to the organizations hosting Ark boxes

= special thanks for finding hosting sites:

* Emile Aben (RIPE)
* Sebastian Castro Avila (.nz Registry Services)
e Hyunchul Kim (Seoul National University)

http://www.snu.ac.kr/
http://www.snu.ac.kr/

\Vionitor Deployment

* 41 monitors In 25 countries

Continent Organization

North America academic :
: 3/4 academic
South America research network

Europe network infrastructure "
Africa commercial network > 1/4 commercial

Asia community network
Oceania

Vlieasurements

* |Pv4 Routed /24 Topology (and AS Links)
* IPvb Topology

** DNS Names & Query/Response Traffic

** Allas Resolution

|Pv4 Routed /24 Topology

** ongoing large-scale topology measurements

* |[CMP Paris traceroute to every routed /24 (8.25 million)
e about 126 /8-equivalents of routed space (as of Oct 2009)

= running scamper
* written by Matthew Luckie of WAND, University of Waikato

** dynamically divide up the measurement work
among members of monitor teams

** 3 teams active

= 13-member team probes every /24 in 2-3 days at
100pps

e only one monitor probes each /24 per cycle (== one pass
through all /24’s)

|Pv4 Routed /24 Topology

l L T I 1 L | L L3 l T T l L]) ' T T ' T T l L L] l L T l

sjc2-us (2%
amsz2-nl (3)
rek-is (32
mty-mx (3
sea-us (1)
sql-us

)

| N N N W N N N T " N N TN TN U U NN NN N U N NN U TN NN U NN U TN U N U TN U U N

O|m
I

=
-
-
-
-

A

Jan Apr Jul Oct Jan Apr Jul
08 08 08 08 09 09 09

data availability per monitor (row)
8

|Pv4 Routed /24 Topology

* collected from Sep 2007 to Jan 2010 (29 months):

* 5.7 billion traceroutes; 2.3TB data
= ~800 cycles

* collecting every month now:

= ~290 million traceroutes; ~120 GB data

* IPv4 topology data is key input into other datasets

* e.g., AS links and alias resolution

Statistics Pages

** per-monitor analysis of IPv4 topology data

wWww.caida.org/projects/ark/statistics

http://www.caida.org/data/active/ipv4_routed_24_topology_dataset.xml
http://www.caida.org/data/active/ipv4_routed_24_topology_dataset.xml
http://www.caida.org/data/active/ipv4_routed_24_topology_dataset.xml
http://www.caida.org/data/active/ipv4_routed_24_topology_dataset.xml

687k 14991
traces

o = AS dispersion
e — by AS hop

S49443.2

|:| WASHINGTON-AS - University of Wash

m WASH-NSF-AS - University of Washing

[EEEE] TRANSITRAIL - National LambdaRail, L

m LEVELS Level 3 Communications

[ECIE] ATT-INTERNET4 - AT&T WorldNet Sery
r(all UUNET - MCI Communications Service:!

D CSUNET-NW - California State Universi

SPRINTLINK - Sprint

[25] NLR - National LambdaRail

e ABILENE - Internet2

COGENT Cogent/PSI

CHINANET-BACKBONE No.31,Jin-rong

D GBLX Global Crossing Ltd.

[NTT-COMMUNICATIONS-2914 - NTT A

COMCAST-7922 - Comcast Cable Com

GEANT The GEANT IP Service

ODN SOFTBANK TELECOM Corp.

WASHINGHTON-RD-AS - University of

“
v
Q
o
<+
e
Q
fg
=y
=
=

137360,5

sea-us monitor

AS dispersion by IP hop

209.124.179.41
2091752100 447 N 205 A7A012N o |-, 155,134 e o
CASN 73) RSN 73 DR <09 .247.94.35

137.164.131.186 | 137.164.131.185
(ASN 11164) (ASN 11164)

137.164.129.34

209.124.191.134 209.124.179.45 209.124.179.46 216.24.186.6 216.24.186 .4
e

$49443.2 =y A -
209,124.,179.41
205.175.108.21 (ASN 101)
(ASN 73)

205.175.101.157 205.175.101.2
CASN 73 (ASN 73) 209.124,188.134
ASN 101)

4120524 137.164.131.186 | 137.164.131.185
CASN 11164) (ASN 11164)

137.164.129.34
(ASN 11164

137.164.129.15 =

128.208.4.102
(ASN 73D 209.124.179.41
203.175.102.117 205.175.102.2 -)4 188 134 209.247.84.38 4.79.106.73
(“9‘ 73) .p-c'.-;N *) 2 T":-.'J 3356) .—.l "_: “7,4 - .;;:4 . . -
137.164.131.186 137.164.131.185 4137 164 179.34
CASN 11164) CASN 11164) RSN 11164

“
O
b
<
-
e
o
g

274721.6

209.124.191.134 209.124.179.45 209.124.179.45 216.24.186.6 216.24.186 .4

/1
64.57.29.74 64.57.29.73 64.57.29.98

205.175.109.21 9.124.1/9.41
(ASN 73) (ASN 101)

137360.8 203,175.,102,157 205.,175.102.2
(ASN 73) (ASN 73)

137.164.131.186 137.164.131.1385
{ ‘ \ 'Il Y { ".'DJ " _'I) - J
ASN 11164 ASN 11164 154 .54 .11 .17

137164 E1291%

AS dispersion by IP hop: see load balancing

e

Statistics Pages
** work in progress: RTT plotted by country

= geolocate destinations with NetAcuity

= color each country by median RTT of destinations

500
RTT (ms)

|Pvo lopology

** ongoing large-scale IPv6 measurements

*x 2.7 million traces since Dec 2008

* 11 monitors

* 4in US, 5in Europe, 1 Asia, 1 Oceania

* |ICMP Paris traceroute to every routed prefix
= each monitor probes a random destination in every
routed prefix in every cycle

e 2,184 prefixes <= /48 (as of Oct 2009)
 # prefixes increased 41% between Aug 2008 and Oct 2009

= probing rate intentionally reduced to 2 days per cycle

Allas Resolution

** goal: collapse interfaces observed in traceroute
paths into routers

= toward a router-level map of the Internet
** earlier efforts at CAIDA:

= iffinder (Mercator technique)
* kapar (APAR)

* past year: MIDAF

*+ RadarGun-like approach

* probe targets to obtain IP ID samples
* find targets that share an IP |D counter

Measurement Big Picture

I Pv4

topology
‘eX|st|ng workflow‘ IPv6
topology
BGP
AS Iinks

router
topology

relatlonshlps %

work in progress

AS-router AS graph with routers
dual graph resolved inside ASes

Collaborations

** Rob Beverly and MIT Spoofer Project

= how many networks allow packets with spoofed IP
addresses to leave their network?

= worked on adding IPv6

e some work still to do before deployment

* Matthew Luckie

= using Ark monitors for various topology measurements
= Alistair King

* masters student supervised by Matthew
* implemented Doubletree using Marinda (tuple space)

* Doubletree was one of the motivations for adopting the
tuple space model of coordination in Ark

21

lools Development

* mper
= new probing engine
= inspired by the probing engine of Scriptroute
 but different needs & goals => different design & implementation
= mper’s goal:

* make it easy to develop complex, distributed, and parallel
measurements

* to be clear: mper itself doesn’t provide distributed
measurements but provides features oriented towards it

* clients use the Marinda tuple space for distributed
measurements

lools Development

% mper

= based on the solid foundation of Matthew Luckie’s scamper

* uses the code from the backend of scamper
* sending/receiving ICMP, UDP, TCP packets; IPv4 & IPv6
* scheduling parallel probes, etc.

= new control interface for use by client measurement
programs

= new probe-response matching techniques

= fine control over probe spacing for dynamic feedback-based
measurements

= simulated probing

 currently, simulated response delay

* new

mper

probe-response matching techniques

= guarantees no probe-response mismatches in any
consecutive 65,536 packets (in worst case)

* not just low probabillity; simply impossible
e even with same (src, dest, proto, sport, dport) for all probes
* multiple probers can run simultaneously without interference

= preserves flow labels for load balancing

= works for all probing methods (ICMP, UDP, and TCP)
and all types of responses (e.g., TCP ACK)

e TCP was especially susceptible to mismatches before

= doesn’t rely on UDP checksums being preserved

®*0
(t

S

der FreeBSD clobber the UDP checksum in responses
nanks to Matthew for fixing the FreeBSD kernel)

so problem in other older systems

24

mper

** mper client can be written in any language

** Ruby binding: rb-mperio

require
class Prober
def initialize
= MperIO.new 8742
.delegate = self
.ping_icmp 1,
.start
end

def mperio_on_data(result)
1f result.responded?
printf , result.rx_sec, result.reply_ipid
end
.Stop
end
end

lools Development

** Marinda
= tuple space for decentralized communication, interaction,
and coordination

e tuple: array of values (strings, numbers, true/false, wildcard,
nested arrays)

= a distributed shared memory + easy-to-use operations

* clients retrieve tuples by pattern matching

Case Study

* example of distributed measurement with mper
and Marinda

** case study: one part of MIDAR alias resolution

= represents a common coordination pattern
= demonstrates ease of implementation

Case Study

** problem:

= probe the targets of an alias set to confirm (or
corroborate) that they are aliases

** requirements:

= probe targets in alias set one at a time
e for details, see MIDAR talk later

= some targets can only be probed from certain monitors
because of probing method restrictions

Alias Set

** alias set: the set of IP addresses belonging to the
same router

sz St

Ti= interface i
(“target 1)

Alias Set

*k assign each target to exactly one monitor

2121 St

Allas Set

** assign each target to exactly one monitor

dllas st

T1
monitor

Allas Set

** assign each target to exactly one monitor

dllas st

T1
monitor

monitor

Allas Set

** assign each target to exactly one monitor

monitor

monitor

2]las 39t

[
|

T+

Tz

|

monitor
monitor

monitor

Implementation

** design:

= a driver program running on the central server globally
coordinates measurements

= a prober program running on each monitor executes
measurements

** probing requires coordination across monitors:

= driver tells a monitor to probe a target
= monitor notifies driver of completion after probing

Probing

monitor A

monitor B
monitor E

q\ a monitor C
monitor D

monitor E

Probing

monitor A

monitor D

monitor B

monitor C

monitor E

Probing

monitor A

N
N
)
A

monitor B

probe |
]
\ monitor C

monitor D

monitor E

Probing

monitor A

monitor D

monitor B

monitor C

monitor E

Probing

monitor A

-

done
A

monitor D

monitor B

monitor C

monitor E

Probing

monitor A

monitor D

monitor B

monitor C

Probing

monitor A

AN monitor B

)

- probe
monitor E \
\ monitor C

monitor D

Probing

** In practice, probe multiple alias sets in parallel

* two levels of parallelism: set size | %

e across monitors 2 56.2
* within a monitor 14.6

8.5

% recent MIDAR run: i?

= 14,566 alias sets of varying sizes ol

e counting only alias sets that must be probed
from multiple monitors

** took ~46 minutes; would take 115 hours
without the parallelism (148x slower)

Driver

*k coordination is simple to implement

= telling a monitor to probe a target:

write [, monitor, set_id, iteration, target_index]

= reacting to monitor notifications of completion:

* the driver’s main control loop
* implicit loop using Ruby’s block notation
* handles notifications from all monitors

[‘DONE”, <monitor>, <alias-set-id>, <iteration>, <target-index>|
.consume_stream([3 : : : 1) do ltuplel
puts(tuple[1l]) # do something with tuple
end

def start Drlver

prime_jobs()

[‘DONE”, <monitor>, <alias-set-id>, <iteration>, <target-index>|
.consume_stream([: . : 3 1) do ltuplel
monitor, set_id, iteration, target_index = tuple[l..-1]
set = [set_1d]

unless submit_job(set)
tuple = [. , set.set_1d]

.write tuple # broadcast set completion
.take tuple

et
unblock_next_job(set)
prime_jobs()

end

break 1f
end
end

Prober

** prober runs on each monitor

= coordinates with the driver
= executes measurements with mper and saves results

[PROBE, <monitor>, <alias-set-id>, <iteration>, <target-index>|
.consume_stream_async([; g 3
|tuplel
set_1d, 1iteration, index = tuple.values_at 2, 3, 4
set = find_set(set_1id)
set.schedule(iteration, 1index)
jlaE

execute_measurement(set)
else
<< set
end
end

FProber

$ts2.monitor_stream_async(["FINISHED", nil, nil]) do ltuplel
case tuple[1]
when "set"
set_1d = tuple[Z]
@active_sets.delete(set_1d)
when "run”
@drain = true
1f @active_measurements.empty? && @deferred_measurements.empty?
@mperio.suspend
end
end
end

Prober

= notifying driver of completion of probe:

$ts.write ["DONE", $monitor, set_id, iteration, target_index]

= notifying downloader of completion of run:

$ts.write ["FINISHED", "prober", run_id, $monitor, out_path]

= working towards automating full system

* coordinate stages on different machines with Marinda

monitor

Future Work

** release mper and Marinda under GPL
** create AS-router dual graph

** Improve infrastructure to allow more collaborators
to use Ark

For more information, or to request data:
www.caida.org/projects/ark

For questions, or to offer hosting: ark-info@caida.org

41

http://www.caida.org/data/active/ipv4_routed_24_topology_dataset.xml
http://www.caida.org/data/active/ipv4_routed_24_topology_dataset.xml
mailto:ark-info@caida.org
mailto:ark-info@caida.org

