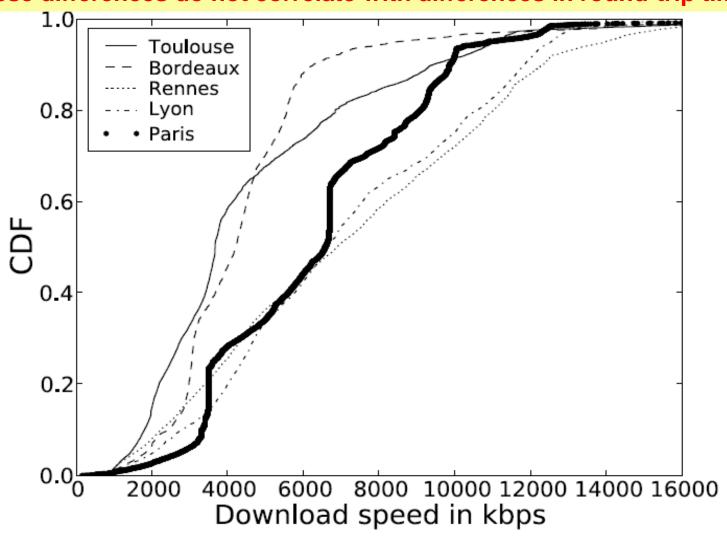
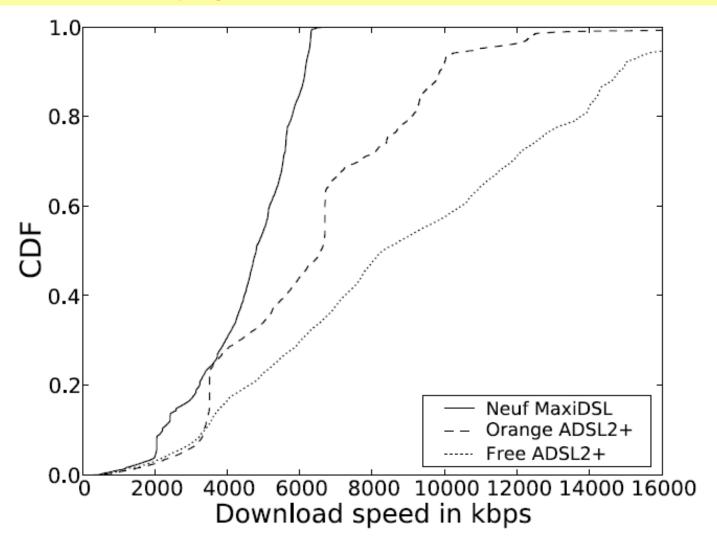

Which factors affect user performance?

- Modem Configuration
- City
- Choice of access ISP
- Service Level Agreement
- DSLAM
- Time of Day
- Day of Week

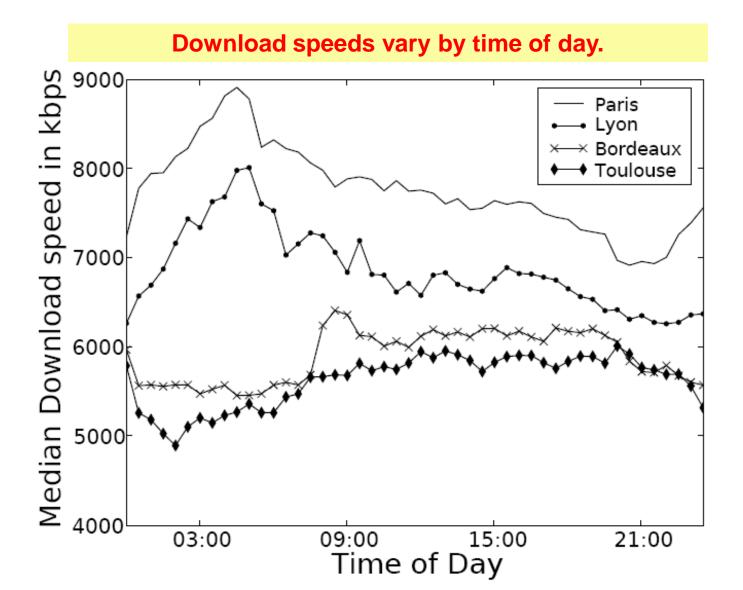
Effects of Modem Configuration


Users who have configured fastpath achieve better download speeds.

Effect of City


A user's city affects download time significantly.

These differences do not correlate with differences in round-trip time.



Effect of ISP

Users in the same city and comparable SLAs can experience widely varying performance, for different ISPs.

Effect of Time of Day

Ranking of Features

- Question: Which of the above features are most important in predicting user performance.
- Approach: Use ensemble learning to train a predictor of user performance, using these features as input.

Output: predictor and ranking of features

Ensemble Learning: RuleFit

- RuleFit (ensemble learning)
 - $-F(x) = a_0 + \sum_{m=1}^{M} a_m f_m(x)$
 - -F(x) is the prediction result (label score)
 - $-f_m(x)$ are base learners (usually simple rules)
 - $-a_m$ are linear coefficients
- Example

	F(x)	$a_{m{m}}$	$f_m(x)$
Rule 1	0.080	0.080	Geodesic distance > 63 AND AS in (1901, 1453,)
Rule 2	+ 0	0.257	Port status: no SMTP service listening

Ranking of Feature Importance

Rank	Upload	Download
1	RTT (100%)	RTT (100%)
2	City (28.5%)	DSLAM (36.6%)
3	DSLAM (25.2%)	Advertised Rate (SLA) (33.7%)
4	Advertised Rate (SLA)(18.3%)	City (32.5%)
5	Fastpath (9.7%)	Time of Day (2.4%)
5	TIme of Day (2.1%)	Fastpath (0.4%)
6	Day of Week (0%)	Day of Week (0%)

- RTT is most important predictor
- DSLAM, City, SLA are also important
- Temporal features are considerably less important

How does performance correlate across time?

 Question: When groups of users experience performance fluctuations, what do they share in common?

 Approach: Apply cross-correlation and pairwise hierarchical clustering to group users.

Results: Correlated Members

Users from the same ISP experience similar fluctuations, even if they are in different cities.

Member 1	Member 2	Correlation coefficient
Lyon, Free ADSL2+	Paris, Free ADSL2+	0.76
Toulouse, Free 10M Unbundled	Paris, Free ADSL2+	0.56
Lyon, Free ADSL2+	Bordeaux, Free ADSL2+	0.56
Bordeaux, Free ADSL2+	Paris, Free ADSL2+	0.51
Lyon, Free ADSL2+	Toulouse, Free 10M Unbundled	0.50
Paris Orange ADSL2+	Paris Orange ADSL Max	0.47
Lyon Orange ADSL Max	Paris Orange ADSL Max	0.46
Lyon Orange ADSL Max	Paris Orange ADSL2+	0.42
Bordeaux, Free ADSL2+	Toulouse, Free 10M Unbundled	0.42
Lyon Orange ADSL2+	Paris Orange ADSL Max	0.40

Conclusion

- So far, mostly expected results
 - ISPs often do not meet their SLAs
 - SLA is a good indicator of performance
 - ISP is a good predictor of performance fluctuation
- Next steps
 - Deployment: gather more detailed measurements
 - Application: Can correlation help identify root cause?