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Consensus is an important task

• Calibration

• Dissemination

• Coordination
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Abstracting the task
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• Network of agents, each with an observation

• Communicate locally – exchange messages about observations

• Compute locally – estimate a function of all values
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There are many aspects to consider

• What are observations?
• continuous or discrete?
• scalar or vector?

• How can we communicate?
• point-to-point or broadcast?
• low resolution or high resolution?

• What do we compute?
• averages
• medians, quantiles
• convex optimization
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The goal(s) for today

W1,i

x1(t)

x2(t)

x3(t)

x4(t)

x5(t)

xi(t) W2,i

W3,i
W4,i

W5,i

1 The basic mathematical model for consensus

2 Routing and mobility can speed up convergence

3 Broadcasting can trade off accuracy for speed

4 The discreet charm of discrete messages
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Building a mathematical model
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The data model
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• Set of n agents

• Agent i observes initial value xi(0) ∈ R for i = 1, 2 . . . n
• Assume data is bounded : xi(0) ∈ [0, 10], for example
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The communication graph
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• Agents are arranged in a graph G = (V, E).

• Agents i can communicate with j if there is an edge (i, j) (e.g.
j ∈ Ni).

• Bidirectional communication : agents exchange messages.
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Constraints on the communication

• Time is slotted : only one transmission per slot.

• Synchronous : use many edges, then update.

• Asynchronous : edges chosen randomly in each slot.
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Measuring performance

The goal is to pass messages between agents such that they can
estimate the average of the initial observations:

x(t)→

(∑
i

xi(0)

)
· 1

Averaging time Tave(n, ε) is time when x(t) is within ε of the average:

Tave(n, ε) = sup
x(0)

inf
t

{
PAlg

(
‖x(t)− xave · 1‖

‖x(0)‖
≥ ε
)
≤ ε
}
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A centralized solution
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9 Simple centralized algorithm:

1 Build a spanning tree

2 Gather all the values at
root

3 Compute and disseminate
average

Pro: requires Θ(n) messages
Con: completely centralized
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Distributed synchronous consensus

Suppose each agent linearly combines itself and its neighbors:

xi(t+ 1) = Wiixi(t) +
∑
j∈Ni

Wijxj(t)∑
j

Wij = 1 ∀i

Wij = Wji

Synchronous algorithm where the update after each slot is given by:

x(t+ 1) = Wx(t)

where W is a doubly stochastic matrix.
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A simple result

Theorem

For synchronous consensus with update matrix W ,

Tave(n, ε) = Θ
(
|E| · Trelax(W ) · log ε−1

)
where Trelax(W ) is the relaxation time of the matrix W :

Trelax(W ) =
1

1− λ2(W )
.

Proof : W is the transition matrix of a Markov chain – consensus is
the convergence of the chain to its stationary distribution.
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A theme with variations

Survey article by Dimakis et al. in Proc. IEEE.

• Synchronous DeGroot (1974), Tsitsiklis (1984)

• Time-varying topologies Chatterjee-Seneta (1977), Tsitsiklis et al. (1986),

Jadbabaie et al. (2003), Ren-Beard (2005), Gao-Cheng (2006), Fagnani-Zampieri

(2008)

• Asynchronous Boyd et al. (2006)

• Quantization Kashyap et al. (2007), Nedic et al. (2009), Yildiz-Scaglione

(2008), Aysal et. al (2009), Kar-Moura (2010), Carli et al. (2010), Lavaie-Murray

(2010)

• Discrete values Benezit et al. (2010)

• Many others!
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Asynchronous updates = “gossip”
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• Node i wakes up at random, chooses neighbor j at random.

• Nodes i and j exchange xi(t) and xj(t) and compute average.

• Set xi(t+ 1) = xj(t+ 1) = 1
2(xi(t) + xj(t)).
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Gossip uses random linear updates

At each time a random pair (i, j) ∈ E averages:

xi(t+ 1) = xj(t+ 1) =
xi(t) + xj(t)

2
.

Each update is linear : x(t+ 1) = W (i,j)(t)x(t).

Theorem

Let W̄ = E[W (i,j)] over the edge selection process. Then

Tave(n, ε) = Θ
(
Trelax(W̄ ) · log ε−1

)

UCSD Sarwate



DANCES Seminar > A simple mathematical model 18 / 45

The implication for big graphs

For the grid with uniform selection, gossip takes Θ(n2) transmissions!

Selecting edges at random is inefficient! Local exchange is inefficient!
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Network properties can accelerate convergence
Joint work with Alex Dimakis and Martin Wainwright
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Geographic gossip with routing

• Assume that packets can be routed between any two nodes.

• Now select “neighbor” uniformly from all nodes and route
message.

• “Effective graph” is now the complete graph.

UCSD Sarwate



DANCES Seminar > Shrinking the graph 20 / 45

Geographic gossip with routing

• Assume that packets can be routed between any two nodes.

• Now select “neighbor” uniformly from all nodes and route
message.

• “Effective graph” is now the complete graph.

UCSD Sarwate



DANCES Seminar > Shrinking the graph 20 / 45

Geographic gossip with routing

• Assume that packets can be routed between any two nodes.

• Now select “neighbor” uniformly from all nodes and route
message.

• “Effective graph” is now the complete graph.

UCSD Sarwate



DANCES Seminar > Shrinking the graph 20 / 45

Geographic gossip with routing

• Assume that packets can be routed between any two nodes.

• Now select “neighbor” uniformly from all nodes and route
message.

• “Effective graph” is now the complete graph.

UCSD Sarwate



DANCES Seminar > Shrinking the graph 21 / 45

Example : the grid

algorithm Trelax(W̄ )

Local Θ(n2)
With routing Θ(n)

This is unfair, since routing costs in number of hops.
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One-hop transmissions to reach consensus

Count number of hops (power) to get within ε of the average:

algorithm one-hop transmission

Local Θ(n2) Boyd et al.

With routing Θ(n3/2) Dimakis,Sarwate, Wainwright

Average on the way Θ(n) Benezit et al.
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Gossip with mobility

• Start with a grid of static nodes.

• Add m fully mobile nodes.

• At each time, m mobile nodes choose new locations uniformly at
random.
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Gossip with mobility

• Same local transmission model.

• Mobile nodes reduce effective diameter to 2.

• Mobile nodes are accessed rarely.
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Lower bounds on Trelax(W̄ )

• Merge all mobile nodes into a “super node.”

• Trelax for induced chain ≤ Trelax for original chain.

• At most a m-factor improvement.
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Upper bounds on Trelax(W̄ )

π(i)

π(j)

π(i)Wik

Use a “flow” argument and the Poincaré inequality:

• Demands Dij = π(i)π(j) = n−2 between each pair of nodes.

• Capacity Cik = π(i)W̄ik = n−1W̄ik between each edge.

• Route flows i→ j to minimize overload on each edge.
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Network effects on convergence

algorithm transmissions

Local Θ(n2) Boyd et al.

With routing Θ(n3/2) Dimakis-Sarwate-Wainwright

Average on the way Θ(n) Benezit et al.

Add m mobile Θ
(

n2

m

)
Sarwate-Dimakis

k-local O
(

n2

k2

)
Sarwate-Dimakis
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Asymmetric gossip using broadcasting

Joint work with T.C. Aysal, M.E. Yildiz and A. Scaglione
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Wireless is inherently broadcast

• In a wireless network, all neighbors can hear a transmission.

• Can perform multiple computations per slot.

• When graph is well-connected, can get performance gains.
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Gossip in one direction
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• All neighbors j ∈ Ni of
node i can hear
transmission.

• Can do a simultaneous
update xj(t+ 1) =
γxj(t) + (1− γ)xi(t).

• No information exchange
– can get consensus
(agreement) but not the
true average.
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Analyzing the broadcast gossip algorithm
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Again, update given by a matrix multiplication:

x(T ) =

(
T∏

t=1

W (it)

)
x(0)

For all t we have W (it)1 = 1, so consensus is stable.
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Benefits and challenges of broadcast
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• No coordination to exchange data.

• Exploits potential long-range connections from shadowing/fading.

• No convergence to true average, but to consensus.

• Important to control the MSE of the consensus.
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Main results

Algorithm reaches consensus almost surely:

P
(

lim
t→∞

x(t) = c1
)

= 1.

The expected consensus value is the true average:

E[c] = x̄

Moreover, there is a closed form for the limiting MSE.
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Simulations : MSE
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Extensions

• Can look at effect of the wireless medium as well.

• Fading allows long-distance connections.

• Initial results suggest significant improvement when path loss is
not too severe.
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Implications

• Broadcasting is simpler than standard gossip – no exchange.

• More robust to packet drops which may occur in wireless.

• Faster convergence in small-to-medium networks.
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k

2R

k + 1
2R

Reaching consensus discretely
Joint work with Tara Javidi
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Typical assumptions are unrealistic
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Existing work doesn’t “look practical”:

• Transmit and receive real numbers

• Consensus is the only goal of the network

• Asymptotics and universality
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Synchronous quantized communication

R
R

R R

R

R

R

RRRRRR

R

R

R

3

2

5
4

4

6

1

5
6

3

8

8

8

4

3

7

5

8

0

7
69 3

• At each time t all neighbors (i, j) exchange quantized values
x̂j(t).

• Messages i→ j and j → i must take no more than R bits.

• Update xi(t+ 1) as a function of xi(t) and messages {x̂j(t)}.
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A simple protocol

W1,i

x1(t)

x2(t)

x3(t)

x4(t)

x5(t)

xi(t) W2,i

W3,i
W4,i

W5,i

xi(t+ 1) = (xi(t)− x̂i(t)) +
∑

j∈Ni∪{i}

Wij x̂j(t).

• Quantization error plus weighted sum of messages

• Iterations preserve sum
∑

i xi(t)
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Observations

t + 1t

• Quantization is important for practical applications.

• Average consensus to within reasonable resolution can be fast.

• Overhead can be reduced by piggybacking on existing traffic.
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Conclusions

W1,i

x1(t)

x2(t)

x3(t)

x4(t)

x5(t)

xi(t) W2,i

W3,i
W4,i

W5,i

• Algorithm can use network resources to accelerate convergence.

• Reaching consensus may be faster than computing averages.

• Lower-resolution averages can be fast and require less overhead.
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Some challenges for the future

IEEE 802.xyz.pdq

• Implementing consensus in protocols for applications.

• Extending to other distributed computation problems.

• Quantifying robustness in rate, connectivity, etc.
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Thank you!
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