Asymptotics, asynchrony, and asymmetry in distributed consensus

Anand D. Sarwate

Information Theory and Applications Center University of California, San Diego

9 March 2011

Joint work with Alex G. Dimakis, Tuncer Can Aysal, Mehmet Ercan Yildiz, Martin Wainwright, and Anna Scaglione, and Tara Javidi

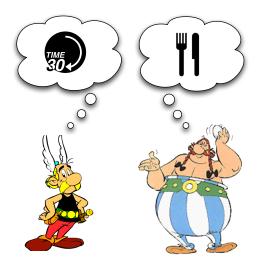
Rapprochement, consensus, accord

DANCES Seminar > Introduction

Rapprochement, consensus, accord

Sarwate

Rapprochement, consensus, accord



DANCES Seminar > Introduction

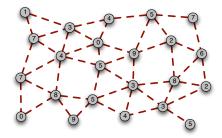
Rapprochement, consensus, accord

3 / 45

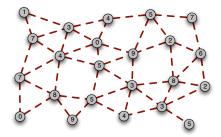
Consensus is an important task

- Calibration
- Dissemination
- Coordination

Abstracting the task

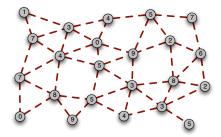


Abstracting the task

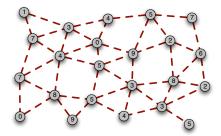


• Network of agents, each with an observation

Abstracting the task



- Network of agents, each with an observation
- Communicate locally exchange messages about observations



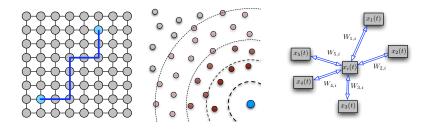
- Network of agents, each with an observation
- Communicate locally exchange messages about observations
- Compute locally estimate a function of all values

- What are observations?
 - continuous or discrete?
 - scalar or vector?

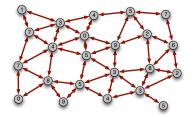
- What are observations?
 - continuous or discrete?
 - scalar or vector?
- How can we communicate?
 - point-to-point or broadcast?
 - low resolution or high resolution?

- What are observations?
 - continuous or discrete?
 - scalar or vector?
- How can we communicate?
 - point-to-point or broadcast?
 - low resolution or high resolution?
- What do we compute?
 - averages
 - medians, quantiles
 - convex optimization

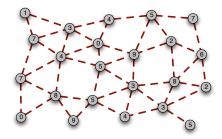
The goal(s) for today



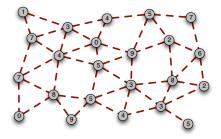
- 1 The basic mathematical model for consensus
- 2 Routing and mobility can speed up convergence
- **3** Broadcasting can trade off accuracy for speed
- **4** The discreet charm of discrete messages



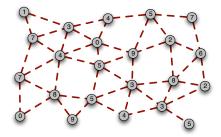
Building a mathematical model



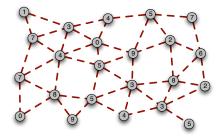
Sarwate



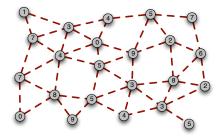
• Set of n agents

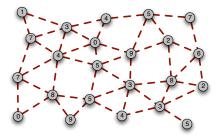


- Set of n agents
- Agent i observes initial value $x_i(0) \in \mathbb{R}$ for $i=1,2\ldots n$

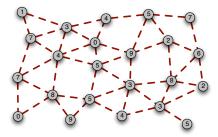


- Set of n agents
- Agent i observes initial value $x_i(0) \in \mathbb{R}$ for $i = 1, 2 \dots n$
- Assume data is bounded : $x_i(0) \in [0, 10]$, for example

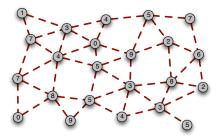




• Agents are arranged in a graph $\mathcal{G} = (\mathcal{V}, \mathcal{E})$.



- Agents are arranged in a graph $\mathcal{G} = (\mathcal{V}, \mathcal{E})$.
- Agents *i* can communicate with *j* if there is an edge (i, j) (e.g. $j \in \mathcal{N}_i$).



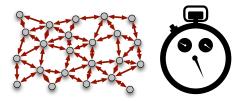
- Agents are arranged in a graph $\mathcal{G} = (\mathcal{V}, \mathcal{E})$.
- Agents i can communicate with j if there is an edge (i, j) (e.g. $j \in \mathcal{N}_i$).
- Bidirectional communication : agents exchange messages.

Constraints on the communication

Constraints on the communication

• Time is slotted : only one transmission per slot.

Constraints on the communication



- Time is slotted : only one transmission per slot.
- Synchronous : use many edges, then update.

- Time is slotted : only one transmission per slot.
- Synchronous : use many edges, then update.
- Asynchronous : edges chosen randomly in each slot.

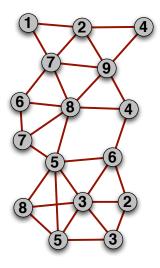
Measuring performance

The goal is to pass messages between agents such that they can estimate the average of the initial observations:

$$\mathbf{x}(t) \to \left(\sum_i x_i(0)\right) \cdot \mathbf{1}$$

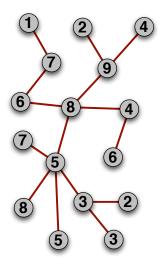
Averaging time $T_{\text{ave}}(n,\epsilon)$ is time when $\mathbf{x}(t)$ is within ϵ of the average:

$$T_{\text{ave}}(n,\epsilon) = \sup_{\mathbf{x}(0)} \inf_{t} \left\{ \mathbb{P}_{Alg}\left(\frac{\|\mathbf{x}(t) - x_{\text{ave}} \cdot \mathbf{1}\|}{\|\mathbf{x}(0)\|} \ge \epsilon \right) \le \epsilon \right\}$$

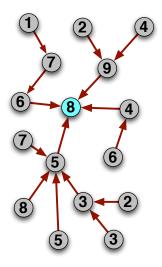


Calit2 UCSD

Simple centralized algorithm:

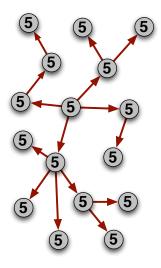


Simple centralized algorithm: Build a spanning tree



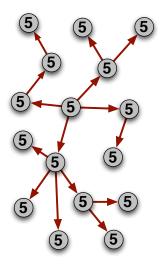
Simple centralized algorithm:

- 1 Build a spanning tree
- 2 Gather all the values at root



Simple centralized algorithm:

- 1 Build a spanning tree
- 2 Gather all the values at root
- Compute and disseminate average



Simple centralized algorithm:

- 1 Build a spanning tree
- 2 Gather all the values at root
- Compute and disseminate average

Pro: requires $\Theta(n)$ messages **Con:** completely centralized

Distributed synchronous consensus

Suppose each agent linearly combines itself and its neighbors:

$$x_i(t+1) = W_{ii}x_i(t) + \sum_{j \in \mathcal{N}_i} W_{ij}x_j(t)$$
$$\sum_j W_{ij} = 1 \quad \forall i$$
$$W_{ij} = W_{ji}$$

Synchronous algorithm where the update after each slot is given by:

$$\mathbf{x}(t+1) = W\mathbf{x}(t)$$

where W is a **doubly stochastic** matrix.

A simple result

Theorem

For synchronous consensus with update matrix W,

$$T_{\text{ave}}(n,\epsilon) = \Theta\left(|\mathcal{E}| \cdot T_{\text{relax}}(W) \cdot \log \epsilon^{-1}\right)$$

where $T_{relax}(W)$ is the relaxation time of the matrix W:

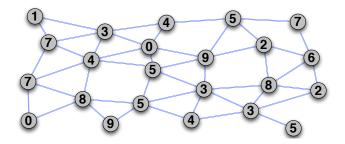
$$T_{\rm relax}(W) = \frac{1}{1 - \lambda_2(W)}$$

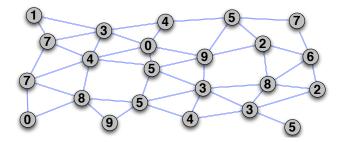
Proof : W is the transition matrix of a Markov chain – consensus is the convergence of the chain to its stationary distribution.

A theme with variations

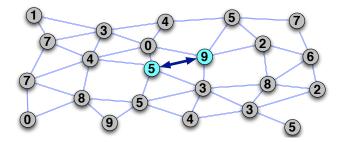
Survey article by Dimakis et al. in Proc. IEEE.

- Synchronous DeGroot (1974), Tsitsiklis (1984)
- **Time-varying topologies** Chatterjee-Seneta (1977), Tsitsiklis et al. (1986), Jadbabaie et al. (2003), Ren-Beard (2005), Gao-Cheng (2006), Fagnani-Zampieri (2008)
- Asynchronous Boyd et al. (2006)
- Quantization Kashyap et al. (2007), Nedic et al. (2009), Yildiz-Scaglione (2008), Aysal et. al (2009), Kar-Moura (2010), Carli et al. (2010), Lavaie-Murray (2010)
- Discrete values Benezit et al. (2010)
- Many others!

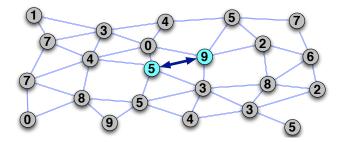




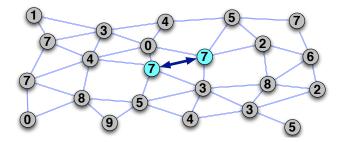
• Node *i* wakes up at random, chooses neighbor *j* at random.



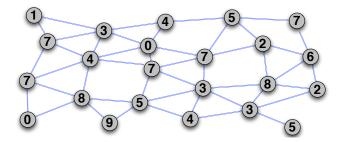
- Node i wakes up at random, chooses neighbor j at random.
- Nodes i and j exchange $x_i(t)$ and $x_j(t)$ and compute average.



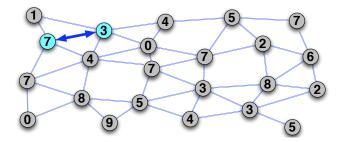
- Node i wakes up at random, chooses neighbor j at random.
- Nodes i and j exchange $x_i(t)$ and $x_j(t)$ and compute average.
- Set $x_i(t+1) = x_j(t+1) = \frac{1}{2}(x_i(t) + x_j(t)).$



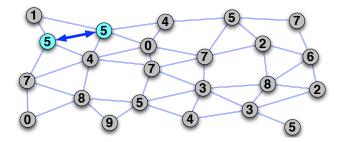
- Node i wakes up at random, chooses neighbor j at random.
- Nodes i and j exchange $x_i(t)$ and $x_j(t)$ and compute average.
- Set $x_i(t+1) = x_j(t+1) = \frac{1}{2}(x_i(t) + x_j(t)).$



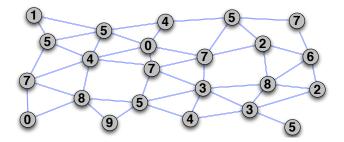
- Node i wakes up at random, chooses neighbor j at random.
- Nodes i and j exchange $x_i(t)$ and $x_j(t)$ and compute average.
- Set $x_i(t+1) = x_j(t+1) = \frac{1}{2}(x_i(t) + x_j(t)).$



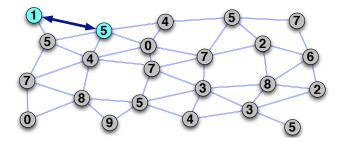
- Node i wakes up at random, chooses neighbor j at random.
- Nodes i and j exchange $x_i(t)$ and $x_j(t)$ and compute average.
- Set $x_i(t+1) = x_j(t+1) = \frac{1}{2}(x_i(t) + x_j(t)).$



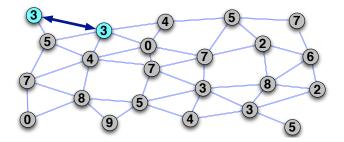
- Node i wakes up at random, chooses neighbor j at random.
- Nodes i and j exchange $x_i(t)$ and $x_j(t)$ and compute average.
- Set $x_i(t+1) = x_j(t+1) = \frac{1}{2}(x_i(t) + x_j(t)).$



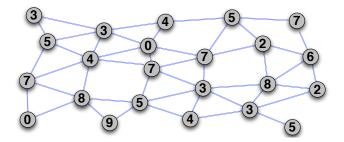
- Node i wakes up at random, chooses neighbor j at random.
- Nodes i and j exchange $x_i(t)$ and $x_j(t)$ and compute average.
- Set $x_i(t+1) = x_j(t+1) = \frac{1}{2}(x_i(t) + x_j(t)).$



- Node i wakes up at random, chooses neighbor j at random.
- Nodes i and j exchange $x_i(t)$ and $x_j(t)$ and compute average.
- Set $x_i(t+1) = x_j(t+1) = \frac{1}{2}(x_i(t) + x_j(t)).$



- Node i wakes up at random, chooses neighbor j at random.
- Nodes i and j exchange $x_i(t)$ and $x_j(t)$ and compute average.
- Set $x_i(t+1) = x_j(t+1) = \frac{1}{2}(x_i(t) + x_j(t)).$



- Node i wakes up at random, chooses neighbor j at random.
- Nodes i and j exchange $x_i(t)$ and $x_j(t)$ and compute average.
- Set $x_i(t+1) = x_j(t+1) = \frac{1}{2}(x_i(t) + x_j(t)).$

At each time a random pair $(i, j) \in \mathcal{E}$ averages:

$$x_i(t+1) = x_j(t+1) = \frac{x_i(t) + x_j(t)}{2}.$$

Each update is linear : $\mathbf{x}(t+1) = W^{(i,j)}(t)\mathbf{x}(t)$.

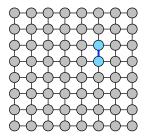
Theorem

Let $\overline{W} = \mathbb{E}[W^{(i,j)}]$ over the edge selection process. Then

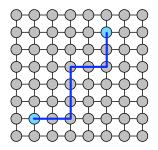
$$T_{\text{ave}}(n,\epsilon) = \Theta\left(T_{\text{relax}}(\bar{W}) \cdot \log \epsilon^{-1}\right)$$

The implication for big graphs

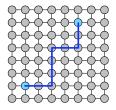
For the grid with uniform selection, gossip takes $\Theta(n^2)$ transmissions!

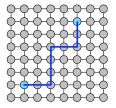


Selecting edges at random is inefficient! Local exchange is inefficient!

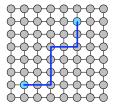


Network properties can accelerate convergence Joint work with Alex Dimakis and Martin Wainwright

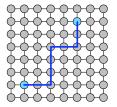




• Assume that packets can be routed between any two nodes.

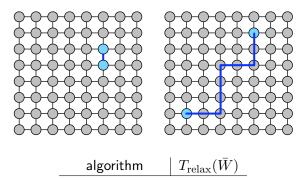


- Assume that packets can be routed between any two nodes.
- Now select "neighbor" uniformly from all nodes and route message.



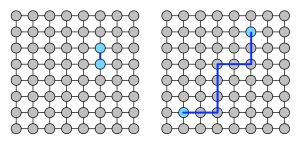
- Assume that packets can be routed between any two nodes.
- Now select "neighbor" uniformly from all nodes and route message.
- "Effective graph" is now the complete graph.

Example : the grid



21 / 45

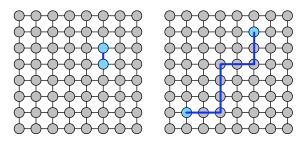
Example : the grid

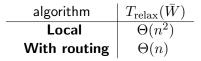


algorithm	$T_{\text{relax}}(\bar{W})$
Local	$\Theta(n^2)$

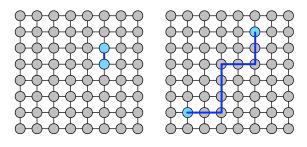
21 / 45

Example : the grid





Example : the grid



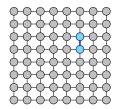


This is unfair, since routing costs in number of hops.

Count number of hops (power) to get within ϵ of the average:

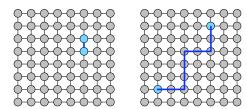
algorithm

one-hop transmission



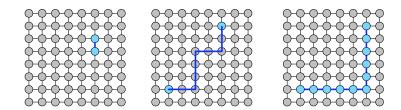
Count number of hops (power) to get within ϵ of the average:

algorithm	one-hop transmission	
Local	$\Theta(n^2)$	Boyd et al.



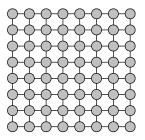
Count number of hops (power) to get within ϵ of the average:

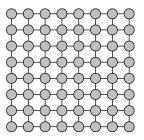
algorithm	one-hop transmission	
Local	$\Theta(n^2)$	Boyd et al.
With routing	$\Theta(n^{3/2})$	Dimakis,Sarwate, Wainwright



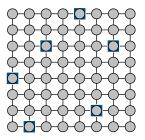
Count number of hops (power) to get within ϵ of the average:

algorithm	one-hop transmission	
Local	$\Theta(n^2)$	Boyd et al.
With routing	$\Theta(n^{3/2})$	Dimakis,Sarwate, Wainwright
Average on the way	$\Theta(n)$	Benezit et al.

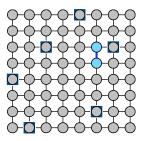




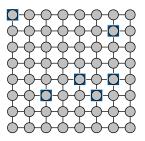
• Start with a grid of static nodes.



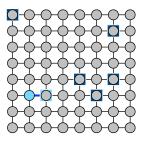
- Start with a grid of static nodes.
- Add *m* fully mobile nodes.



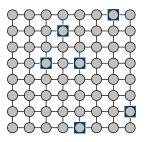
- Start with a grid of static nodes.
- Add *m* fully mobile nodes.



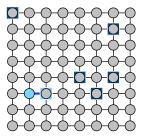
- Start with a grid of static nodes.
- Add *m* fully mobile nodes.
- At each time, m mobile nodes choose new locations uniformly at random.



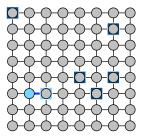
- Start with a grid of static nodes.
- Add *m* fully mobile nodes.
- At each time, m mobile nodes choose new locations uniformly at random.



- Start with a grid of static nodes.
- Add *m* fully mobile nodes.
- At each time, m mobile nodes choose new locations uniformly at random.

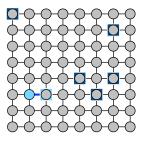


Gossip with mobility



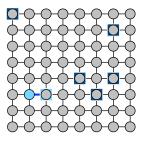
• Same local transmission model.

Gossip with mobility



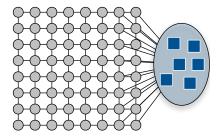
- Same local transmission model.
- Mobile nodes reduce effective diameter to 2.

Gossip with mobility

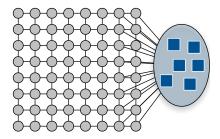


- Same local transmission model.
- Mobile nodes reduce effective diameter to 2.
- Mobile nodes are accessed rarely.

Lower bounds on $T_{\text{relax}}(\bar{W})$

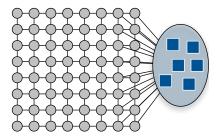


Lower bounds on $T_{\text{relax}}(\bar{W})$



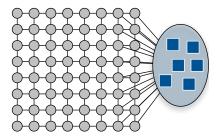
• Merge all mobile nodes into a "super node."

Lower bounds on $T_{\text{relax}}(\bar{W})$



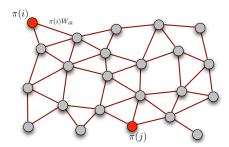
- Merge all mobile nodes into a "super node."
- $T_{\rm relax}$ for induced chain $\leq T_{\rm relax}$ for original chain.

Lower bounds on $T_{relax}(W)$

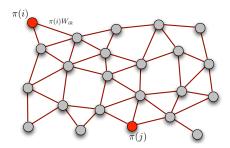


- Merge all mobile nodes into a "super node."
- $T_{\rm relax}$ for induced chain $\leq T_{\rm relax}$ for original chain.
- At most a *m*-factor improvement.

Upper bounds on $T_{ m relax}(\bar{W})$



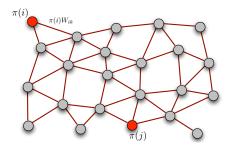
Upper bounds on $T_{relax}(W)$



Use a "flow" argument and the Poincaré inequality:

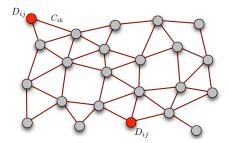
• Demands $D_{ij} = \pi(i)\pi(j) = n^{-2}$ between each pair of nodes.

Upper bounds on $T_{relax}(W)$



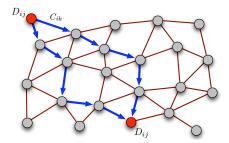
- Demands $D_{ij} = \pi(i)\pi(j) = n^{-2}$ between each pair of nodes.
- Capacity $C_{ik} = \pi(i)\overline{W}_{ik} = n^{-1}\overline{W}_{ik}$ between each edge.

Upper bounds on $T_{ m relax}(ar{W})$



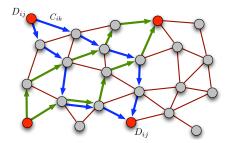
- Demands $D_{ij} = \pi(i)\pi(j) = n^{-2}$ between each pair of nodes.
- Capacity $C_{ik} = \pi(i)\overline{W}_{ik} = n^{-1}\overline{W}_{ik}$ between each edge.

Upper bounds on $T_{ m relax}(ar{W})$



- Demands $D_{ij} = \pi(i)\pi(j) = n^{-2}$ between each pair of nodes.
- Capacity $C_{ik} = \pi(i)\bar{W}_{ik} = n^{-1}\bar{W}_{ik}$ between each edge.
- Route flows $i \rightarrow j$ to minimize *overload* on each edge.

Upper bounds on $T_{ m relax}(ar{W})$



- Demands $D_{ij} = \pi(i)\pi(j) = n^{-2}$ between each pair of nodes.
- Capacity $C_{ik} = \pi(i)\bar{W}_{ik} = n^{-1}\bar{W}_{ik}$ between each edge.
- Route flows $i \rightarrow j$ to minimize *overload* on each edge.

DANCES Seminar > Shrinking the graph

27 / 45

Network effects on convergence

algorithm

transmissions

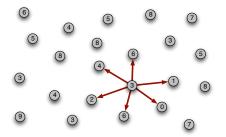
algorithm	transmissions	
Local	$\Theta(n^2)$	Boyd et al.

algorithm	transmissions	
Local	$\Theta(n^2)$	Boyd et al.
With routing	$\Theta(n^{3/2})$	Dimakis-Sarwate-Wainwright

algorithm	transmissions	
Local	$\Theta(n^2)$	Boyd et al.
With routing	$\Theta(n^{3/2})$	Dimakis-Sarwate-Wainwright
Average on the way	$\Theta(n)$	Benezit et al.

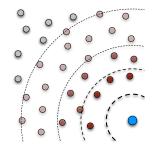
algorithm	transmissions	
Local	$\Theta(n^2)$	Boyd et al.
With routing	$\Theta(n^{3/2})$	Dimakis-Sarwate-Wainwright
Average on the way	$\Theta(n)$	Benezit et al.
Add m mobile	$\Theta\left(\frac{n^2}{m}\right)$	Sarwate-Dimakis

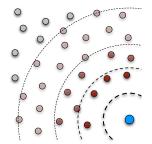
algorithm	transmissions	
Local	$\Theta(n^2)$	Boyd et al.
With routing	$\Theta(n^{3/2})$	Dimakis-Sarwate-Wainwright
Average on the way	$\Theta(n)$	Benezit et al.
Add m mobile	$\Theta\left(\frac{n^2}{m}\right)$	Sarwate-Dimakis
k-local	$O\left(\frac{n^2}{k^2}\right)$	Sarwate-Dimakis



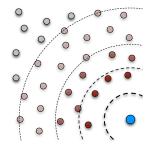
Asymmetric gossip using broadcasting

Joint work with T.C. Aysal, M.E. Yildiz and A. Scaglione

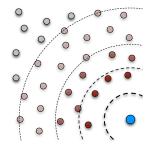




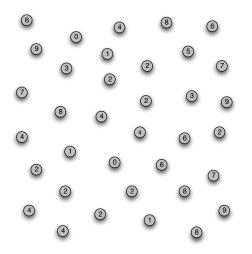
• In a wireless network, all neighbors can hear a transmission.

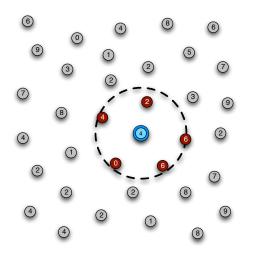


- In a wireless network, all neighbors can hear a transmission.
- Can perform multiple computations per slot.



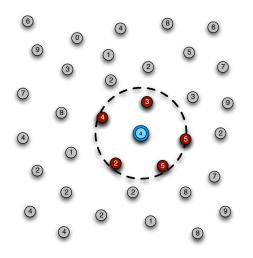
- In a wireless network, all neighbors can hear a transmission.
- Can perform multiple computations per slot.
- When graph is well-connected, can get performance gains.





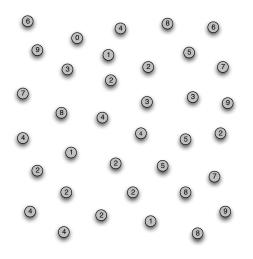
UCSD

• All neighbors $j \in \mathcal{N}_i$ of node i can hear transmission.

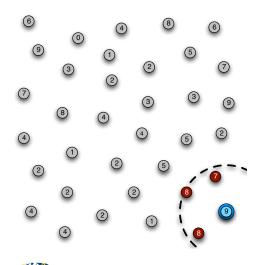


UCSD

- All neighbors $j \in \mathcal{N}_i$ of node i can hear transmission.
- Can do a simultaneous update $x_j(t+1) = \gamma x_j(t) + (1-\gamma)x_i(t)$.

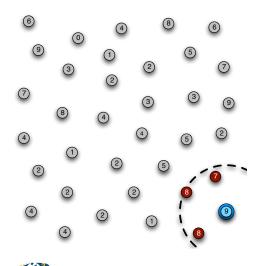


- All neighbors $j \in \mathcal{N}_i$ of node i can hear transmission.
- Can do a simultaneous update $x_j(t+1) = \gamma x_j(t) + (1-\gamma)x_i(t)$.



UCSD

- All neighbors $j \in \mathcal{N}_i$ of node i can hear transmission.
- Can do a simultaneous update $x_j(t+1) = \gamma x_j(t) + (1-\gamma)x_i(t)$.



UCSD

- All neighbors $j \in \mathcal{N}_i$ of node i can hear transmission.
- Can do a simultaneous update $x_j(t+1) = \gamma x_j(t) + (1-\gamma)x_i(t)$.
- No information exchange

 can get consensus
 (agreement) but not the true average.

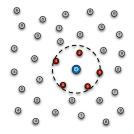
Analyzing the broadcast gossip algorithm

Again, update given by a matrix multiplication:

$$\mathbf{x}(T) = \left(\prod_{t=1}^{T} W^{(i_t)}\right) \mathbf{x}(0)$$

For all t we have $W^{(i_t)}\mathbf{1} = \mathbf{1}$, so consensus is *stable*.

Benefits and challenges of broadcast



- No coordination to exchange data.
- Exploits potential long-range connections from shadowing/fading.
- No convergence to true average, but to *consensus*.
- Important to control the MSE of the consensus.

Main results

Algorithm reaches consensus almost surely:

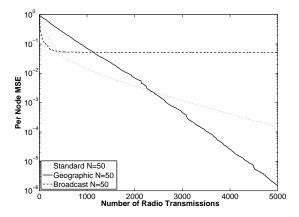
$$\mathbb{P}\left(\lim_{t\to\infty}\mathbf{x}(t)=c\mathbf{1}\right)=1.$$

The expected consensus value is the true average:

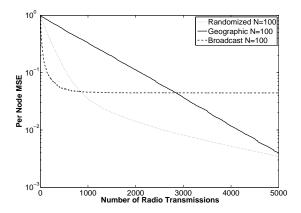
$$\mathbb{E}[c] = \bar{x}$$

Moreover, there is a closed form for the limiting MSE.

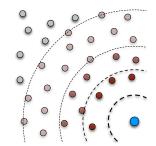
Simulations : MSE



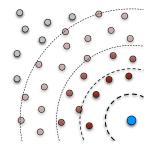
Simulations : MSE



Extensions

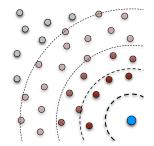


Extensions



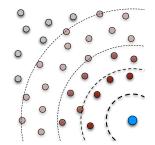
• Can look at effect of the wireless medium as well.

Extensions

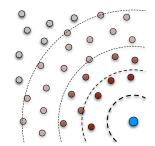


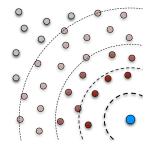
- Can look at effect of the wireless medium as well.
- Fading allows long-distance connections.

Extensions

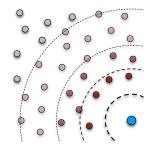


- Can look at effect of the wireless medium as well.
- Fading allows long-distance connections.
- Initial results suggest significant improvement when path loss is not too severe.

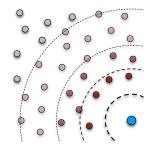




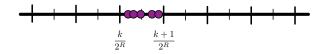
• Broadcasting is simpler than standard gossip - no exchange.



- Broadcasting is simpler than standard gossip no exchange.
- More robust to packet drops which may occur in wireless.

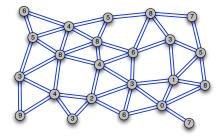


- Broadcasting is simpler than standard gossip no exchange.
- More robust to packet drops which may occur in wireless.
- Faster convergence in small-to-medium networks.

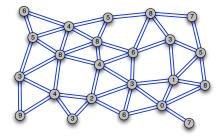


Reaching consensus discretely

Joint work with Tara Javidi

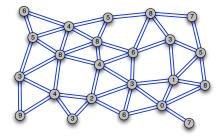


Existing work doesn't "look practical":



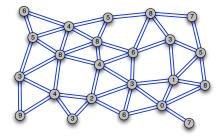
Existing work doesn't "look practical":

• Transmit and receive real numbers



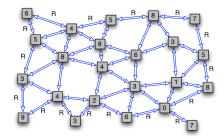
Existing work doesn't "look practical":

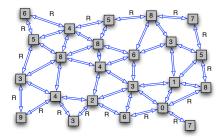
- Transmit and receive real numbers
- Consensus is the only goal of the network



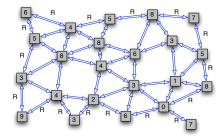
Existing work doesn't "look practical":

- Transmit and receive real numbers
- Consensus is the only goal of the network
- Asymptotics and universality

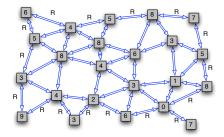




• At each time t all neighbors (i,j) exchange quantized values $\hat{x}_j(t).$

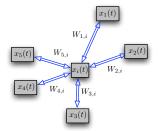


- At each time t all neighbors (i, j) exchange quantized values $\hat{x}_j(t)$.
- Messages $i \rightarrow j$ and $j \rightarrow i$ must take no more than R bits.



- At each time t all neighbors (i, j) exchange quantized values $\hat{x}_j(t)$.
- Messages $i \rightarrow j$ and $j \rightarrow i$ must take no more than R bits.
- Update $x_i(t+1)$ as a function of $x_i(t)$ and messages $\{\hat{x}_j(t)\}$.

A simple protocol

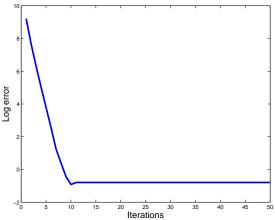


$$x_i(t+1) = (x_i(t) - \hat{x}_i(t)) + \sum_{j \in \mathcal{N}_i \cup \{i\}} W_{ij} \hat{x}_j(t).$$

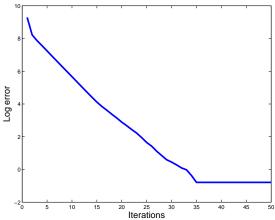
- Quantization error plus weighted sum of messages
- Iterations preserve sum $\sum_i x_i(t)$

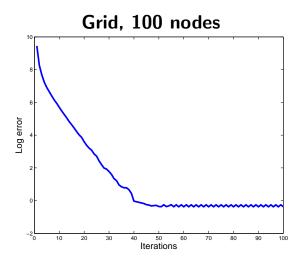
UCSD

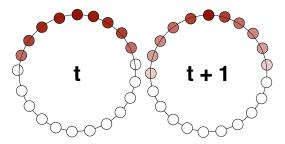
Random topology, 49 nodes, good connectivity



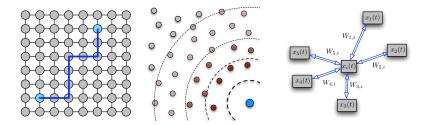
Random topology, 49 nodes, poor connectivity





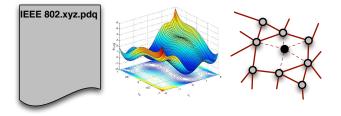


- Quantization is important for practical applications.
- Average consensus to within reasonable resolution can be fast.
- Overhead can be reduced by piggybacking on existing traffic.



- Algorithm can use network resources to accelerate convergence.
- Reaching consensus may be faster than computing averages.
- Lower-resolution averages can be fast and require less overhead.

Some challenges for the future



- Implementing consensus in protocols for applications.
- Extending to other distributed computation problems.
- Quantifying robustness in rate, connectivity, etc.

Thank you!

