Measuring the performance of Narrowband-IoT (NB-IoT)

Ahmed Elmokashfi, Foivos Michelinakis and Anas Al-selwi

IoT applications have diverse requirements

Shorter to medium battery life Medium coverage Some mobility Latency in order of seconds

Battery life 10-15 years Outdoor and deep indoors (+20dB) Stationary Medium to high reliability Latency 10 to 60 seconds Mains powered Outdoor and indoors Stationary low to high reliability Latency < 30 seconds

Mobile-IoT must be scalable, energy efficient and ubiquitous

Long battery life

Low device cost

e cost Low deployment cost

Extended coverage

Support for many devices

User security, control & service API

3GPP Release 13 standardized two solutions for current and future IoT

	NB-IoT LTE Cat. NB	eMTC LTE Cat. M1
Deployment	In-Band LTE, guard- band LTE and standalone	In-Band LTE
Bandwidth	180 KHz	1.08 MHz
Peak data rate	~150 kbps	1 Mbps
Latency	1.6s-10 s	10-15 ms
Max UE tx power	23 or 20 dBm	23 or 20 dBm
Power Saving	PSM, eDRX	PSM, eDRX
Duplex	Half	Full/Half
Complexity relative to LTE	10%	20-25%

NB-IoT is now deployed in several countries

NB-IoT has two mechanisms to help devices conserving power

NB-IoT enhances coverage by using transmission repetitions

- 2x repetitions translates into 3dB coverage gain
- 2x repetitions results in 0.5x speed and 2x latency

Early measurements of NB-IoT commercial deployments

- 2 mobile operators + 2 NB-IoT modules
- UDP ping every minute with packet sizes in the range 20 to 512 bytes

Measurements traffic pattern

Measurement id

Clear differences in energy consumption between operators and devices

These differences can reduce battery lifetime by 6 years (assuming that we are using a CR2032 battery with 235mAh capacity and 1 activity period per day)

The differences are also evident when the coverage is poor

Energy [J]

The two operators configure power management differently

Measurement id

The two operators configure power management differently

Measurement id

RTTs are mostly below 10 seconds but are characterized by wide variability

Achieving a similar delay may correspond to different energy consumption levels

RTT variability can partially be attributed to differences in coverage

RTT (sec)

Probability (RTT|Energy consumption)

There is a need for new metrics for describing NB-IoT reliability and performance

- Several questions remain unanswered
 - Can we generate realistic traffic patterns?
 - Understand how transport protocols perform over NB-IoT e.g. COAP, MQTT
- NB-IoT large parameter space makes interpreting measurements difficult
 - Power management timers
 - Repetitions